Simulations for the Lyman-alpha forest

Julián Bautista

Institute of Cosmology and Gravitation University of Portsmouth, UK

UNIVERSITY OF PORTSMOUTH

Mock Córdoba, April 2019

- A forest survey versus a galaxy survey
- Dark energy and neutrino masses
- Overview of current (eBOSS) measurements
- Overview of used simulations and modelling
- Ideas for future

Forest survey vs Galaxy survey

The Lyman-alpha forest

One spectrum = hundreds of density estimates

Forest survey vs Galaxy survey

Forest survey vs Galaxy survey

Access to:

- higher redshift Universe (z > 2)
- low bias tracer
- larger volumes
- models of clustering on small-scales
- physics of the intergalactic medium (IGM)
- proto-galaxies via high column density systems

Cosmology with forests

BAO, Dark Energy

Three-dimensional or across different lines-of-sight

Large-scale correlations

Configuration-space

Hundreds of survey-volume mock catalogs Analytic models

Neutrino masses

One-dimensional or line-of-sight

Small-scale correlations

Fourier-space

N-body hydrodynamic **simulations**

I will illustrate these with the last up-to-date measurements

(e)BOSS (Extended) Baryon Oscillation Spectroscopic Survey

SDSS Telescope @ Apache Point Observatory, New Mexico, USA

BAO with forests

First BAO detection: Busca et al. 2013, Slosar et al. 2013, Kirkby et al. 2013

Final BOSS measurements: Bautista et al. 2017, du Mas des Bourboux et al. 2017

First eBOSS update with 2 year data: de Sainte Agathe et al. 2019, Blomqvist et al. 2019

Today on the arXiv! 1904.03400 & 1904.03430

Use of Lyman-beta forest

Auto-correlation (de Sainte Agathe et al. 2019)

Cross-correlation with QSOs (Blomqvist et al. 2019)

Auto-correlation BAO constraints

Auto-correlation BAO constraints

Auto-correlation BAO constraints

Cross-correlation BAO constraints

Tension with Planck reduced from 2.3 sigma to 1.7 sigma

BAO with forests

BAO with forests

Mock forests for BAO

In order to cover both large volumes and small scale fluctuations:

Cosmology with forests

BAO, Dark Energy

Three-dimensional or across different lines-of-sight

Large-scale correlations

Configuration-space

Hundreds of survey-volume mock catalogs Analytic models

Neutrino masses

One-dimensional or line-of-sight

Small-scale correlations

Fourier-space

N-body hydrodynamic **simulations**

I will illustrate these with the last up-to-date measurements

Neutrino masses with forests

Impact on linear matter power-spectrum Palanque-Delabrouille et al. 2014

One-dimensional power spectrum

Hydro-simulations to model the signal

Suite of 48 hydro-sims (Gadget-3) for several values of both cosmological and IGM parameters, and resolutions for "splicing" Borde et al. 2014, Rossi et al. 2014

		=
Parameter	Value	
$\sigma_8(z=0)$	0.83	± 0.05
n _s	0.96	± 0.05
$H_0 [\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}]$	67.5	± 5.0
$\Omega_{\rm m}$	0.31	± 0.05
$\Omega_{ m b}$	0.044	
Ω_{Λ}	0.69	
$T_0(z = 3)[K]$	15 000	± 7000
$\gamma(z=3)$	1.3	± 0.3
Starting redshift	30	

100 Mpc/h 768³ 25 Mpc/h 768³ 25 Mpc/h 192³

Adiabatic cooling

Ultraviolet background ionization heating

Compton and recombination cooling

Feedback from star formation and AGNs

Particle based neutrino implementation

+ neutrino masses: $M_{\nu} = 0.1, 0.2, 0.3, 0.4, \text{ and } 0.8 \text{ eV}$

Gas

Dark Matter

Neutrinos

Constraints on neutrino mass

Constraints on n_s , σ_8 , warm dark matter and neutrino masses McDonald et al. 2006, Palanque-Delabrouille et al. 2014, Yèche et al. 2017 (shown)

Other simulations

Dedicated to Lyman-alpha forest

And the list goes on...

What do we need?

Discrepancies on intermediate-scales?

Is this enough for neutrino masses?

Parameter	Value		
$\sigma_8(z=0)$	0.83	±0.05	
n _s	0.96	±0.05	
$H_0 [{ m km \ s^{-1} \ Mpc^{-1}}]$	67.5	±5.0	
Ω_m	0.31	±0.05	Ultrav
Ωο	0.044		Cor
Ω_{Λ}	0.69		
$T_0(z=3)[\mathrm{K}]$	15 000	±7000	Feedt
$\gamma(z=3)$	1.3	±0.3	Deuti
Starting redshift	30		Parti

Adiabatic cooling
Ultraviolet background ionization heating
Compton and recombination cooling
Feedback from star formation and AGNs
Particle based neutrino implementation

+ neutrino masses: $M_{\nu} = 0.1, 0.2, 0.3, 0.4, \text{ and } 0.8 \text{ eV}$

What do we need?

Common framework for both analyses?

Conclusion

- Lyman-alpha forest surveys are now main component of future spectroscopic surveys
- eBOSS new BAO measurements with Lyman-alpha forest are now 1.7 sigma away from Planck 2018 prediction
- Neutrino masses upper bound from forests+CMB is below 0.15 eV (95% C.L.)
- Simulations are an essential tool in these analyses. Challenges are to simulate huge volumes (Gpc) and small scale fluctuations (tens of kpc). How to increase realism and precision for cosmology?