Bias and Clustering Calculations Optimised: Maximising discovery with galaxy surveys

By Sergio Contreras

With the collaboration of Raul Angulo, Giovanni Aricò, Marcos Pellejero & Matteo Zennaro

08 - 04 - 2019

The group

Raul Angulo Group leader

Giovanni Aricò PhD. student

Matteo Zennaro

Postdoc

Marcos Pellejero Postdoc

The working place

The project

Galaxy surveys

*Original plots from Anderson et al. (2013) & Schneider et. al. (2019)

https://www.youtube.com/watch?time_continue=1&v=-YVEmTCE3tQ

The Predictions

- Errors scaling dark matter particles always below 5% (k < 3 h/Mpc)
- Scaling h, M_v and Ω_b have similar or lower errors compared to scale by σ_8 . n_s has a better performance than Ω_M .

The Predictions

- Low error when scaling the haloes only.
- Scaling only haloes is faster and use less computational resources than scaling the dark matter particles
- Perfect for generating mocks with HOD using only 1 simulation.... But that is **not** what we want.

The Cosmologies

The Cosmologies

• We optimize the performance of the scaler on a parameter space 10σ larger than Planck proxies. These parameters will cover:

- h^s ∈ [0.6,0.8]
- The number of simulations to run and their cosmology where chosen to minimize:
 - The error in the predicted p(k=1) of the scale simulations
 - The maximum time scale (a) at which the simulation need to be run
 - The maximum size at which the simulation will be scaled.
- We find that we optimally have to run 3 dark matter simulations with:

0	$\sigma_{8} = 0.9$	$\Omega_{\rm M} = 0.270$	$\Omega_{\rm b} = 0.06$	n _s = 0.92	h = 0.65	(Vilya*)
0	$\sigma_{8}^{\circ} = 0.9$	$\Omega_{\rm M}^{\rm m} = 0.315$	$\Omega_{\rm b}^{\rm o} = 0.05$	n s = 1.01	h = 0.60	(Nenya*)
0	$\sigma_{8}^{\circ} = 0.9$	$\Omega_{\rm M}^{\rm m}$ = 0.360	$\tilde{\Omega_{b}} = 0.05$	n _s = 1.01	h = 0.70	(Narya*)

The Tools

- L-Gadget3
 - Include a phase space halo finder algorithm
 - Compute FOF, subfinds & merger trees on the fly
 - Compute orphans
 - Compute & save other useful properties (eg. Vpeak, accretion mass, etc)
 - Save fraction of DM particles (as needed)
- Bacco
 - Python, cython & C cosmological tool package
 - Allow loading, scaling and analysing dark matter simulations
 - Include a series of additional tools that include (and are not limited) to:
 - Creating mocks (using SHAM, HODs and more!)
 - Analysing errors
 - Visualise simulations (and make movies)
 - Emulators and MCMC packages
 - All kind of analysis to the haloes, subhaloes, galaxies & dark matter particles of the simulations (eg. correlation function, power spectrum, multipoles, mass function, mass-concentration relation, etc)
- Others
 - Pair simulations

The Galaxies

- Accretion model on SHAM
- SFR-SHAM mocks
- Automatic computation of stellar mass function, correlation functions, power spectrum, covariance matrix, multipoles, etc
- MCMC and emulator implementation to predict cosmological information from galaxy clustering.

The Neutrinos

Scaling with massive neutrinos:

- Minimize the difference in the **cold** matter linear amplitude
- Include **scale dependent** growth rate and growth factor
- The large scale correction preserves the correct scale dependence of the clustering

Ratio of P(k) of a ΛCDM scaled simulation and a simution actually run with neutrinos

Results:

- 1% accuracy on **power spectrum** up to $k\sim1$ h/Mpc
- Few % accuracy on halo abundance
- Same level of accuracy on SHAM galaxies correlation function as in ACDM

The Baryons

Adding baryon physics into only-gravity simulations

Why?

- ~10-20% effect on the matter Power Spectrum at k~10 h/Mpc
- Accurate predictions for Weak Lensing surveys
- Joint constraints on cosmology and baryon physics

How?

- A posteriori halo by halo displacements of particles exploiting analytical halo density profiles
- Cosmology rescaling + baryon correction model to measure matter Power Spectrum and shear angular Power Spectrum
- Fisher / MCMC analysis to explore degenerations between cosmological and baryonic parameters

Take away message

- The scaling technique can be used to constrain cosmology from observations using only a reduce number of simulations.
- By running less simulations, we can do them largers and with higher resolution.
- Higher resolution simulations allowed us to use more sophisticated techniques to populate haloes with galaxies
- Errors in the scaling are much lower than other sources of errors (like HODs or SHAMs)
- Always remember Bacco's moto:

ONE SIMULATION TO FIT THEM ALL, ONE SIMULATION TO SCALE THEM, ONE CODE TO RULE THEM ALL, AND WITH PYTHON ANALYSE THEM.

Import Bacco

NEAR HARAD