Non-fiducial cosmological test from geometrical and dynamical distortions around voids

Carlos M. Correa,^{1,2}* Dante J. Paz,^{1,2} Nelson D. Padilla,^{3,4} Andrés N. Ruiz,^{1,2} Raúl E. Angulo,^{5,6} and Ariel G. Sánchez⁷

¹Instituto de Astronomía Teórica y Experimental, UNC-CONICET, Laprida 854, X5000BGR-Córdoba, Argentina
 ²Observatorio Astronómico de Córdoba, Universidad Nacional de Córdoba, Laprida 854, X5000BGR-Córdoba, Argentina
 ³Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
 ⁴Centro de Astro-Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
 ⁵Donostia International Physics Centre (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain
 ⁶IKERBASQUE, Basque Foundation for Science, E-48013, Bilbao, Spain
 ⁷Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garchina, Germany

Mock Córdoba – Galaxy formation for gravity and cosmology April 2019 - Córdoba - Argentina

VOIDS AS COSMOLOGICAL LABS

- AP tests: shape evolution analysis. (Ryden 1995; Lavaux & Wandelt 2012; Sutter et al. 2014; Mao et al. 2017). Expansion history and geometry of the Universe.
- RSD studies: take advantage of the fact that dynamics can be modelled with linear theory, since velocities are dominated by coherent flows. (Paz et al. 2013; Cai et al. 2016; Achitouv 2017; Hawken et al. 2017; Nadathur et al. 2019a, 2019b). Growth rate of cosmic structures.
- Modified Gravity theories: predict deviations from GR to be most pronounced in unscreened low density environments. (Cai et al. 2015; Barreira et al. 2015; Cautun et al. 2018; Paillas et al. 2019).
- Abundance of voids: excursion set formalism + spherical expansion. (Sheth & van de Weygaert 2004; Furlanetto & Piran 2006; Jennings et al. 2013).
- Others: ISW, weak gravitational lensing, thermal Sunyaev-Zeldovich.

•

AP + RSD with the **void-galaxy correlation** function. (Hamaus et al. 2015, 2016; **Correa et al. 2019**).

VOID-GALAXY CROSS CORRELATION

- Statistical tool and fundamental observable of the test.
- Describes the structure, environment and dynamics inside and around voids.
- Non fiducial : measured directly in terms of angular distances and redshift differences between void-galaxy pairs.
- SYSTEMATICS

NON FIDUCIAL CORRELATION

Observables
$$(\theta, z, z')$$

θ Angular distance between the void centre - galaxy pair measured on the plane of the sky (POS)

 $\xi(\theta, \zeta)$

- Z Redshift of the galaxy
- *Z* [′] **Redshift of the void-centre** (provided by the void finder)

Observable space (θ,ζ)

 $\zeta = |z - z'|$ **Redshift difference** between the void centre - galaxy pair measured along the **line of sight** (LOS)

Real space $(r_{\perp}, r_{\parallel})[h^{-1}Mpc]$

Distorted space $(\sigma, \pi)[h^{-1}Mpc]$

GD

RSD

$$\begin{cases} \sigma = d_{\rm com}(z') \ \theta \\ \pi = |d_{\rm com}(z) - d_{\rm com}(z') \end{cases}$$

$$d_{\rm com}(z) = c \int_0^z \frac{\hat{z}}{H(\hat{z})}$$

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$

Expansion and geometry

 $\begin{cases} \sigma = r_{\perp} \\ \pi = r_{\parallel} + \frac{v_{\parallel}}{H(z)}(1+z) \\ v(r) = -\frac{1}{3} \frac{H(z)}{(1+z)} \left(\frac{f}{b}(z) r \Delta(r) \right) \\ \beta(z) \end{cases}$

Growth rate of structures

BIN SIZE AND PROJECTED CORRELATIONS

DATA SET

SIMULATION		VOID SAMPLES
Name	Millennium XXL Angulo et al. (2012)	
Cosmology	 Ω_m = 0.25 Ω_Λ = 0.75 H₀ = 73 km s⁻¹ Mpc⁻¹ 	10^4 10^4
Dimensions	3 h ⁻¹ Gpc size	
Resolution	6720 ³ dm particles	
Matter tracers	Dark matter haloes	
Snapshots	0.51; 0.99; 1.50	$10^{1} - \frac{z_{bax} = 0.51}{z_{bax} = 0.99}$
Impact	Resolution and volume (future surveys)	10 ⁰
	VOIDS	R _{void} [h ⁻¹ Mpc]
Identificator	Ruiz et al. (2015)	Correa et al. (2019)
Description	Spherical void finder	
Radius criterion	Redshift dependent Spherical collapse model	

PROJECTED CORRELATIONS

Correa et al. (2019)

80

 $z_{box} = 0.99$

best fit

0.045

 $PR = 20 h^{-1} Mpc$

 $PR = 40 h^{-1} Mpc$

PR - 60 h⁻¹ Mpc

0.056

100

Projection towards the POS in the redshift ranges given by PR

Projection towards the LOS in the angular ranges given by PR

0.033

ζ

r[h⁻¹ Mpc]

60

40

0.022

20

0.1

-0.2

0.3

0.4

0.011

 $\xi_{\rm los}$

MODEL 1) GD 3) RSD $1 + \xi(\sigma, \pi) = \int_{-\infty}^{\infty} [1 + \xi(r)] \frac{1}{\sqrt{2\pi}\sigma_{r}} \exp\left[-\frac{(v_{\parallel} - (v(r))\frac{r_{\parallel}}{r})^{2}}{2\sigma_{r}^{2}}\right] dv_{\parallel}$ $\sigma = d_{\rm com}(z') \; \theta$ $\pi = \left| d_{\rm com}(z) - d_{\rm com}(z') \right|$ 2) BIN SIZE 4) VELOCITY $DD = 2 \hat{\pi} \int_{z'}^{z'_{\text{max}}} dz' d_{\text{com}}^2(z') n_{\nu}(z') V_{\text{slice}}$ $v(r) = -\frac{1}{3} \frac{H(z)}{(1+z)} \beta(z) r \Delta(r),$ $\left| \int_{z'+\zeta_{\rm ext}}^{z'+\zeta_{\rm up}} dz \; \frac{dd_{\rm com}}{dz}(z) \; n_t(z) \int_{\theta_{\rm ext}}^{\theta_{\rm ext}} d\theta \; \theta \; \left[1 + \xi(\sigma,\pi) \right] + \right.$ **5) REAL SPACE CORRELATION** $\int_{z'-\zeta_{\rm low}}^{z'-\zeta_{\rm low}} dz \; \frac{dd_{\rm com}}{dz}(z) \; n_t(z) \int_{\theta_{\rm ext}}^{\theta_{\rm ext}} d\theta \; \theta \; \left[1 + \xi(\sigma,\pi)\right] \,,$ $\underbrace{\xi(r)}_{\xi(r)} = \begin{cases} Ar - 1 & \text{if } r < r_{\text{cut}}, \\ -\xi_0 \left[\left(\frac{r}{r_0} \right)^{-3} + \left(\frac{r}{r_0} \right)^{-\alpha} \right] & \text{if } r \ge r_{\text{cut}}, \end{cases}$ $DR = \hat{\pi} \left(\theta_{ext}^2 - \theta_{int}^2 \right) \int_{z'}^{z'_{imax}} dz' \ d_{com}^2(z') \ n_v(z') \ V_{slice}$ $\left| \int_{z'+\zeta_{\rm up}}^{z'+\zeta_{\rm up}} dz \ \frac{dd_{\rm com}}{dz}(z) \ n_t(z) + \int_{z'-\zeta_{\rm up}}^{z'-\zeta_{\rm low}} dz \ \frac{dd_{\rm com}}{dz}(z) \ n_t(z) \right|$ **6) INTEGRATED DENSITY** COSMOLOGICAL SET $\{\Omega_m, \beta\}$ $\Delta(r) = \begin{cases} \frac{3}{4}Ar - 1 & \text{if } r < r_{\text{cut}}, \\ \frac{3}{r^3} \left[\frac{ar^4}{4} - \frac{r_{\text{cut}}}{3} + I(r) - I(r_{\text{cut}}) \right] & \text{if } r \ge r_{\text{cut}}, \end{cases}$ NUISANCE SET $\{\sigma_v, \xi_0, r_0, \alpha\}$

COVARIANCE MATRICES

- MCMC
- Dimensionally much smaller than the traditional case
- Inverse estimation is numerically more stable
- Noise in the likelihood analysis is reduced
- Allows to use a smaller number of mock catalogues

COSMOLOGICAL CONSTRAINTS

Correa et al. (2019)

COSMOLOGICAL CONSTRAINTS

 $z_{218} = 0.99$

8

- Calibration: recover the MXXL values
- Likelihood distributions show a Gaussian shape
- No degeneracies

SHIFTING OF VOID CENTRES

Nadathur et al. (2019)

 (i) The number of voids is *conserved* under the redshift space mapping (Eq. 7)

(ii) Void positions are *invariant* under the redshift space mapping, so that the transformation $\mathbf{r} \rightarrow \mathbf{s}$ depends on galaxy velocities only (Eq. 8)

(iii) The average radial outflow velocity around voids is isotropic (Eq. 9)

(iv) The real space correlation is *isotropic*, $\xi^{r}(\mathbf{r}) = \xi^{r}(r)$

Reconstruction: density field reconstruction method based on the Zeldovich approximation to recover the real-space void positions from redshift space.

SHIFTING OF VOID CENTRES

Nadathur et al. (2019)

CONCLUSIONS

- Voids are powerful cosmological labs: AP tests, RSD studies, modified gravity, void abundance.
- Non-fiducial cosmological test using the void-galaxy cross correlation function (measured directly in terms of angles and redshifts).
- Model of systematics:
 - \checkmark Geometrical distortions (GD) Ω_m
 - Dynamical distortions (RSD) $\beta = f/b$
 - Bin size (mixing of scales and projection)
 - Void centres shifting
- Calibration of the method using the MXXL simulation.
- Smaller and dociler covariance matrices.

THANK YOU FOR YOUR ATTENTION

<u>Contact</u>: cmcorrea@oac.unc.edu.ar