Breaking cosmic degeneracies? (with non-standard observables)

Wojciech "Voytek" Hellwing Center for Theoretical Physics in Warsaw Polish Academy of Sciences

Córdoba 9th of April, orbit no. 2019

Collaborators: Boajiu Li (Durham), Maciek Bilicki (Warsaw), Kazuya Koyama (Portsmouth), Ben Bose (Geneva),

Standard model of cosmology: core assumptions

- Hot relativistic Big Bang
- Gaussian initial conditions (adiabatic, Inflation)

• global homogeneity and isotropy (early Universe ok, late-time under scrutiny)

Dominant Dark Matter (detected in CMB, physical nature unknown)

• GR is theory of gravity on all scales

(tested only on Solar System scales and strong-field regime)

Gravity

GR - a successful story (of metric)

General Relativity is a metric theory. Einstein field equations can be derived by varying the Einstein-Hilbert action integral with respect to metric.

Paving the road to new paradigm

In 1859 **Urbain Le Verrier** showed that slow precession of Mercury's orbit perihelion could not be explained by Newton's theory of gravity.

A conjecture – hypothetical planet Vulcan as a cause of the anomaly.

Vulcan was never discovered.

Instead the Newtonian theory was improved to GR

Testing GR/DE – bold task of XXI century extra-galactic astronomy

Charting MG. From GR to the land of dragons

Diagram of Modified Gravity plethora of treasure trove

MG is even more non-linear then GR

Beyond GR – looking for cosmological effects

 $P(k) = \langle |\delta_{\mathbf{k}}|^2 \rangle$ Power spectrum of density fluctuations

Linear evolution equation for density perturbations.

$$\frac{\partial^2 \delta_k}{\partial t^2} + 2\frac{\dot{a}}{a}\frac{\partial \delta_k}{\partial t} + \left(\frac{c_s^2 k^2}{a^2} - 4\pi G\rho_0\right)\delta_k = 0.$$

Linear growth rate:
$$f$$

 $f(z)\sigma_8(z) \propto \frac{dD}{da}a$
 $f \equiv \frac{d\ln D}{d\ln a}$

MG predict ehnaced growth of structures

FIG. 5. The matter density power spectrum computed at z = 0 for our fiducial GR model (solid line) and two nDGP flavours (dotted and dashed-dotted lines). The shaded region illustrate the cosmic variance error. The bottom panel illustrates the fractional difference of both MG models w.r.t. the GR case.

Do not trust baryons, they make up everything (more complicated!)

Do not trust baryons, they make up everything (more complicated!)

RSD and the conspiracy of the damping tail

$$P_g^s(k,\mu) = D(k\mu\sigma_v)P_K(k,\mu,b)$$

where

$$D(k\mu\sigma_{\rm v}) = \begin{cases} \exp[-(k\mu\sigma_{\rm v})^2] \\ 1/[1+(k\mu\sigma_{\rm v})^2] \end{cases}$$

and

 $P_K(k,\mu,b) =$

$$\begin{cases} b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\delta}(k) + \mu^{4}f^{2}P_{\delta\delta}(k) & (\text{mod. A}) \\ b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\theta}(k) + \mu^{4}f^{2}P_{\theta\theta}(k) & (\text{mod. B}) \\ b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\theta}(k) + \mu^{4}f^{2}P_{\theta\theta}(k) \\ + C_{A}(k,\mu;f,b) + C_{B}(k,\mu;f,b) & (\text{mod. C}) \end{cases}$$

$$b(k) = \begin{cases} b_{\rm L} \\ b_{\rm L} b_{\rm NL}(k) \end{cases}$$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 748525.

(24)

RSD and the conspiracy of the damping tail

Signal modeling is degenerated with assumed gravity!

(24)

$$P_g^s(k,\mu) = D(k\mu\sigma_v)P_K(k,\mu,b),$$

where

$$D(k\mu\sigma_{\rm v}) = \begin{cases} \exp[-(k\mu\sigma_{\rm v})^2] \\ 1/[1+(k\mu\sigma_{\rm v})^2] \end{cases}$$

and

$$\begin{split} P_{K}(k,\mu,b) &= \\ \begin{cases} \underline{b}^{2}(k)P_{\delta\delta}(k) + 2\mu^{2} \underline{f} \underline{b}(k)P_{\delta\delta}(k) + \mu^{4} \underline{f}^{2} P_{\delta\delta}(k) & (\text{mod. A}) \\ \underline{b}^{2}(k)P_{\delta\delta}(k) + 2\mu^{2} \underline{f} \underline{b}(k)P_{\delta\theta}(k) + \mu^{4} \underline{f}^{2} P_{\theta\theta}(k) & (\text{mod. B}) \\ \underline{b}^{2}(k)P_{\delta\delta}(k) + 2\mu^{2} \underline{f} \underline{b}(k)P_{\delta\theta}(k) + \mu^{4} \underline{f}^{2} P_{\theta\theta}(k) & (\text{mod. C}) \\ + \underline{C}_{A}(k,\mu;f,b) + \underline{C}_{B}(k,\mu;f,b) & (\text{mod. C}) \end{split}$$

$$b(k) = \begin{cases} b_{\rm L} \\ b_{\rm L} b_{\rm NL}(k) \end{cases}$$

RSD and the conspiracy of the damping tail

Gravity agnostic modeling leads to theoretical bias 0.98 MG GR 0.96 Ben Bose 0.94 0.92 0.90 Ben Bose 0.12 0.14 .08 0.10 0.16 0.18 0.20 0.22 $k_{max} \left[h/Mpc \right]$

* * * * * * * Bose, Koyama, WAH, Zhao, Winther 2017

MARIE CURIE ACTIONS

What about direct velocity data?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 748525.

MARIE CURIE ACTIONS

What about direct velocities data?

Signal is model independent but there are big systematics

Cosmo gravity probes list of bad deeds

Theoretical bias prone
Weak lensing statistics
RSD clustering probes
Cluster mass comparison

Solution? - Look for model independent observable.. or/and - Study galaxy formation in the acies MG regime. - LSS clustering probes

LSS clustering probes
Cluster mass comparison
Galaxy satellite dynamics

Cosmic density field: A Gaussian random field

Non-standard GR tests: clustering amplitudes

Negative kurtosis

Baseline: Kurtosis value of 0

Positive kurtosis

Non-standard GR tests: clustering amplitudes

Non-standard GR tests: clustering amplitudes

WAH, Koyama, Bose, Zhao 2017 (arXiv:1703.03395)

RSD mild for clustering amplitudes!

Take home messages

- Crucial to test GR on cosmological and intergalactic distances.
- Clean test (both for GR and MG) are hard to achieve: degeneracies leading to systematics effects.
- Outlook for difficult but cleaner methods (i.e. velocities, hierarchical clustering in RSD)
- Really need MG-hydro galaxy formation run to test most of the methods against baryonic effects (happened for f(R) → see Christian Arnold's work/talk!

