

extraterrestrische Physik

MARTHA LIPPICH

10 APRIL 2019

ARIEL G. SÁNCHEZ, MANUEL COLAVINCENZO, EMILIANO SEFUSATTI, PIERLUIGI MONACO, LINDA BLOT, MARTIN CROCCE, M. ALVAREZ, A. AGRAWAL, S. AVILA, A. BALAGUERA-ANTOLÍNEZ, R. BOND, S. CODIS, C. DALLA VECCHIA, A. DORTA, P. FOSALBA, A. IZARD, F. S. KITAURA, M. PELLEJERO-IBANEZ, G. STEIN, M. VAKILI, G. YEPES

COMPARING APPROXIMATE METHODS FOR Mock catalogues and covariance matrices

DIFFERENT CLUSTERING MEASUREMENTS

2-point correlation function (Lippich et al. 2019)

Power spectrum (Blot et al. 2019)

Bispectrum (Colavincenzo et al. 2019)

CORRELATION FUNCTION MEASUREMENTS

Anisotropic 2-point correlation function: Legendre multipoles and clustering wedges

EXTRACTING INFORMATION FROM MEASUREMENTS

Model: nonlinear gravitational evolution (gRPT, Crocce, Scoccimarro, Blas in prep.), bias and RSD

Assume Gaussian likelihood

$$-2\ln \mathcal{L}(\boldsymbol{\xi}|\boldsymbol{\theta}) = (\boldsymbol{\xi} - \boldsymbol{\xi}_{theo}(\boldsymbol{\theta}))^{t} \boldsymbol{\Psi}(\boldsymbol{\xi} - \boldsymbol{\xi}_{theo}(\boldsymbol{\theta}))$$
$$\boldsymbol{\Psi} = \boldsymbol{C}^{-1}$$
$$\boldsymbol{\nabla}$$
Covariance matrix

COVARIANCE MATRIX ESTIMATION

COVARIANCE MATRIX ESTIMATION FROM SIMULATIONS

Covariance matrix **C** estimated from **N**_s mock measurements

$$C_{ij} = \frac{1}{N_s - 1} \sum_{k=1}^{N_s} (\xi_{i,k} - \langle \xi_i \rangle) (\xi_{j,k} - \langle \xi_j \rangle)$$

Depending on N_s, C has associated error (noise), which propagates into final constraints on cosmological parameters

 $\rightarrow N_S >> N_D$

 For analysis of Euclid ~2000 - 10 000 independent realizations required!
 WE NEED FAST APPROXIMATE METHODS

COMPARED METHODS

• **Reference N-body catalogues** from *Minerva* simulations 300 boxes, L=1500 h^{-1} Mpc, z=1.0, Λ CDM (Grieb et al. '16)

PREDICTIVE METHODS

CALIBRATED METHODS

figure inspired by Chuang et al. '15

MODELS OF THE DENSITY PDF

Gaussian covariance model: (Grieb et al. '16), interpolated non-linear power spectrum as input

Log-normal: assumes lognormal PDF of halo and matter density field (Agrawal et al. '17)

ROADMAP

- 1. Measure covariance matrix obtained from all methods
 - same ICs, two different mass thresholds (1.1x10¹³, 2.7x10¹³
 M_{sun}/h) with different ways of matching to N-body catalogues (mass, abundance, bias)
- 2. Create synthetic data using our baseline model
- **3**. Compare performance on fits
 - Fix cosmology to that of N-body simulations
 - Constraints on Alcock-Paczynski parameters α_{\parallel} , α_{\perp} and growth rate $f\sigma_8$

EXAMPLE:

MULTIPOLE ANALYSIS "DENSITY 1" SAMPLE

CUT THROUGH CORRELATION MATRIX

$$R_{nm} = C_{nm} [\sigma_n(s_i)\sigma_m(s_j)]^{-1}$$

PERFROMANCE COMPARISON

Comparison of 2D constraints

PARAMETER ERRORS CORRELATION FUNCTION

STATISTICAL PARAMETER VOLUMES

Volume of allowed region in 3D parameter space

$$V = \sqrt{\det \operatorname{Cov}(\alpha_{\parallel}, \alpha_{\perp}, f\sigma_8)}$$

COMPARISON CONFIGURATION AND FOURIER SPACE

Comparison of volume ratios of density matched samples

BISPECTRUM: PARAMETER VOLUMES

- Likelihood analysis with bispectrum variance
- Model of halo bispectrum = tree-level approximation in PT
- Model parameters: $\{b_1, b_2, \gamma_2, B_{SN}^{(1)}, B_{SN}^{(2)}\}$

(Colavincenzo et al. 2019)

CONCLUSIONS

- Noise from covariance matrices propagates into cosmological constraints
- Mean values of parameter constraints from approximate methods agree perfectly with N-body results
- Configuration space: no clear preference for any of the approximate methods, Gaussian works well!
- Differences between methods become more evident for power spectrum and are strongest for bispectrum